Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Microbiol Res ; 272: 127388, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2320562

ABSTRACT

The stability of SARS-CoV-2 for varying periods on a wide range of inanimate surfaces has raised concerns about surface transmission; however, there is still no evidence to confirm this route. In the present review, three variables affecting virus stability, namely temperature, relative humidity (RH), and initial virus titer, were considered from different experimental studies. The stability of SARS-CoV-2 on the surfaces of six different contact materials, namely plastic, metal, glass, protective equipment, paper, and fabric, and the factors affecting half-life period was systematically reviewed. The results showed that the half-life of SARS-CoV-2 on different contact materials was generally 2-10 h, up to 5 d, and as short as 30 min at 22 °C, whereas the half-life of SARS-CoV-2 on non-porous surfaces was generally 5-9 h d, up to 3 d, and as short as 4 min at 22 â„ƒ. The half-life on porous surfaces was generally 1-5 h, up to 2 d, and as short as 13 min at 22 °C. Therefore, the half-life period of SARS-CoV-2 on non-porous surfaces is longer than that on porous surfaces, and thehalf-life of the virus decreases with increasing temperature, whereas RH produces a stable negative inhibitory effect only in a specific humidity range. Various disinfection precautions can be implemented in daily life depending on the stability of SARS-CoV-2 on different surfaces to interrupt virus transmission, prevent COVID-19 infections, and avoid over-disinfection. Owing to the more stringent control of conditions in laboratory studies and the lack of evidence of transmission through surfaces in the real world, it is difficult to provide strong evidence for the efficiency of transmission of the contaminant from the surface to the human body. Therefore, we suggest that future research should focus on exploring the systematic study of the entire transmission process of the virus, which will provide a theoretical basis for optimizing global outbreak prevention and control measures.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Temperature , Textiles , Disinfection
2.
Microbiological research ; 2023.
Article in English | EuropePMC | ID: covidwho-2305939

ABSTRACT

The stability of SARS-CoV-2 for varying periods on a wide range of inanimate surfaces has raised concerns about surface transmission;however, there is still no evidence to confirm this route. In the present review, three variables affecting virus stability, namely temperature, relative humidity (RH), and initial virus titer, were considered from different experimental studies. The stability of SARS-CoV-2 on the surfaces of six different contact materials, namely plastic, metal, glass, protective equipment, paper, and fabric, and the factors affecting half-life period was systematically reviewed. The results showed that the half-life of SARS-CoV-2 on different contact materials was generally 2–10 h, up to 5 d, and as short as 30 min at 22°C, whereas the half-life of SARS-CoV-2 on non-porous surfaces was generally 5–9 h d, up to 3 d, and as short as 4 min at 22℃. The half-life on porous surfaces was generally 1–5 h, up to 2 d, and as short as 13 min at 22°C. Therefore, the half-life period of SARS-CoV-2 on non-porous surfaces is longer than that on porous surfaces, and thehalf-life of the virus decreases with increasing temperature, whereas RH produces a stable negative inhibitory effect only in a specific humidity range. Various disinfection precautions can be implemented in daily life depending on the stability of SARS-CoV-2 on different surfaces to interrupt virus transmission, prevent COVID-19 infections, and avoid over-disinfection. Owing to the more stringent control of conditions in laboratory studies and the lack of evidence of transmission through surfaces in the real world, it is difficult to provide strong evidence for the efficiency of transmission of the contaminant from the surface to the human body. Therefore, we suggest that future research should focus on exploring the systematic study of the entire transmission process of the virus, which will provide a theoretical basis for optimizing global outbreak prevention and control measures.

3.
J Med Virol ; 2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2232453

ABSTRACT

The Omicron variant has become the dominant COVID-19 variant worldwide due to its rapid and cryptic spread; therefore, successful early warning is of great importance to be able to control epidemics in their early phase, before developing into large outbreaks. COVID-19-related Baidu search index, which reflects human behavior to a certain degree, was used to retrospectively detect the warning signs for Omicron variant outbreaks in China in 2022. The characteristics and effects of warning signs were analyzed in detail. We detected the presence of early warning signs (both high and low thresholds) and found that these occurred 4-7 days earlier than traditional epidemiological surveillance and >20 days earlier than the implementation of the local "lockdown" policy. Compared with the "high threshold" warning, the early warning effect of the "low threshold" is also vital because it indicates a complacency about epidemic prevention and control. However, there is obvious heterogeneity in the optimal threshold for detecting early warning signs and their distribution in different cities. Multi-source and multi-point early warning systems should be established via combining internet-based big data in the future to conduct effective and early real-time warning. This would create precious time for the early control of COVID-19 outbreaks. This article is protected by copyright. All rights reserved.

4.
Infect Dis Poverty ; 12(1): 1, 2023 Jan 16.
Article in English | MEDLINE | ID: covidwho-2196466

ABSTRACT

BACKGROUND: The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads rapidly and insidiously. Coronavirus disease 2019 (COVID-19) screening is an important means of blocking community transmission in China, but the costs associated with testing are high. Quarantine capacity and medical resources are also threatened. Therefore, we aimed to evaluate different screening strategies to balance outbreak control and consumption of resources. METHODS: A community network of 2000 people, considering the heterogeneities of household size and age structure, was generated to reflect real contact networks, and a stochastic individual-based dynamic model was used to simulate SARS-CoV-2 transmission and assess different whole-area nucleic acid screening strategies. We designed a total of 87 screening strategies with different sampling methods, frequencies of screening, and timings of screening. The performance of these strategies was comprehensively evaluated by comparing the cumulative infection rates, the number of tests, and the quarantine capacity and consumption of medical resource, which were expressed as medians (95% uncertainty intervals, 95% UIs). RESULTS: To implement COVID-19 nucleic acid testing for all people (Full Screening), if the screening frequency was four times/week, the cumulative infection rate could be reduced to 13% (95% UI: 1%, 51%), the miss rate decreased to 2% (95% UI: 0%, 22%), and the quarantine and medical resource consumption was lower than higher-frequency Full Screening or sampling screening. When the frequency of Full Screening increased from five to seven times/week (which resulted in a 2581 increase in the number of tests per positive case), the cumulative infection rate was only reduced by 2%. Screening all people weekly by splitting them equally into seven batches could reduce infection rates by 73% compared to once per week, which was similar to Full Screening four times/week. Full Screening had the highest number of tests per positive case, while the miss rate, number of tests per positive case, and hotel quarantine resource consumption in Household-based Sampling Screening scenarios were lower than Random Sampling Screening. The cumulative infection rate of Household-based Sampling Screening or Random Sampling Screening seven times/week was similar to that of Full Screening four times/week. CONCLUSIONS: If hotel quarantine, hospital and shelter hospital capacity are seriously insufficient, to stop the spread of the virus as early as possible, high-frequency Full Screening would be necessary, but intermediate testing frequency may be more cost-effective in non-extreme situations. Screening in batches is recommended if the testing capacity is low. Household-based Sampling Screening is potentially a promising strategy to implement.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , Disease Outbreaks
5.
Infect Dis Poverty ; 11(1): 95, 2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2009472

ABSTRACT

BACKGROUND: The continuous mutation of severe acute respiratory syndrome coronavirus 2 has made the coronavirus disease 2019 (COVID-19) pandemic complicated to predict and posed a severe challenge to the Beijing 2022 Winter Olympics and Winter Paralympics held in February and March 2022. METHODS: During the preparations for the Beijing 2022 Winter Olympics, we established a dynamic model with pulse detection and isolation effect to evaluate the effect of epidemic prevention and control measures such as entry policies, contact reduction, nucleic acid testing, tracking, isolation, and health monitoring in a closed-loop management environment, by simulating the transmission dynamics in assumed scenarios. We also compared the importance of each parameter in the combination of intervention measures through sensitivity analysis. RESULTS: At the assumed baseline levels, the peak of the epidemic reached on the 57th day. During the simulation period (100 days), 13,382 people infected COVID-19. The mean and peak values of hospitalized cases were 2650 and 6746, respectively. The simulation and sensitivity analysis showed that: (1) the most important measures to stop COVID-19 transmission during the event were daily nucleic acid testing, reducing contact among people, and daily health monitoring, with cumulative infections at 0.04%, 0.14%, and 14.92% of baseline levels, respectively (2) strictly implementing the entry policy and reducing the number of cases entering the closed-loop system could delay the peak of the epidemic by 9 days and provide time for medical resources to be mobilized; (3) the risk of environmental transmission was low. CONCLUSIONS: Comprehensive measures under certain scenarios such as reducing contact, nucleic acid testing, health monitoring, and timely tracking and isolation could effectively prevent virus transmission. Our research results provided an important reference for formulating prevention and control measures during the Winter Olympics, and no epidemic spread in the closed-loop during the games indirectly proved the rationality of our research results.


Subject(s)
COVID-19 , Nucleic Acids , Beijing , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Pandemics/prevention & control , SARS-CoV-2
6.
Prim Care Diabetes ; 15(6): 899-909, 2021 12.
Article in English | MEDLINE | ID: covidwho-1447044

ABSTRACT

This review comprehensively summarizes epidemiologic evidence of COVID-19 in patients with Type 2 diabetes, explores pathophysiological mechanisms, and integrates recommendations and guidelines for patient management. We found that diabetes was a risk factor for diagnosed infection and poor prognosis of COVID-19. Patients with diabetes may be more susceptible to adverse outcomes associated with SARS-CoV-2 infection due to impaired immune function and possible upregulation of enzymes that mediate viral invasion. The chronic inflammation caused by diabetes, coupled with the acute inflammatory reaction caused by SARS-CoV-2, results in a propensity for inflammatory storm. Patients with diabetes should be aware of their increased risk for COVID-19.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Humans , Inflammation/diagnosis , Inflammation/epidemiology , Risk Factors , SARS-CoV-2
7.
Precis Clin Med ; 4(1): 73-76, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1276210

ABSTRACT

A commentary on "Humoral immune response to SARS-CoV-2 in Iceland".

8.
Int J Health Policy Manag ; 2021 Mar 16.
Article in English | MEDLINE | ID: covidwho-1204476

ABSTRACT

Social capital refers to the effective functioning of social groups through networks of relationships. The lockdown measures due to coronavirus disease 2019 (COVID-19) may change the social capital among youths. This study aimed to evaluate changes in social capital before and during COVID-19 lockdown among Chinese youths. It was based on the online COVID-19 Impact on Lifestyle Change Survey (COINLICS) conducted among 10 540 youths at three educational levels, including high/vocational school, undergraduate, and graduate, before and during COVID-19 lockdown. Measures of perceptions of social capital were adapted from a validated Chinese version of Health-related Social Capital Measurement based on youths' characteristics of living and studying environment. Social capital was measured at four dimensions, including individual social capital (ISC), family social capital (FSC), community social capital (CSC), and society social capital (SSC). Overall, compared to before lockdown, ISC and CSC scores decreased, while FSC and SSC scores increased during lockdown. When stratified by educational levels, the trends for each dimension of social capital were consistent with the overall population. There were 43.9%, 5.7%, 32.1%, and 3.7% of the participants showing decreased scores during lockdown for ISC, FSC, CSC, and SSC, respectively, while 7.2%, 24.0%, 15.3%, and 10.7% of participants showed increased scores for ISC, FSC, CSC, and SSC, respectively. Our timely, large-scale study showed decreased social capital in individual and community dimensions and increased social capital in family and society dimensions during lockdown.

9.
Int J Med Sci ; 17(16): 2511-2530, 2020.
Article in English | MEDLINE | ID: covidwho-823620

ABSTRACT

ShuFeng JieDu capsule (SFJDC), a traditional Chinese medicine, has been recommended for the treatment of COVID-19 infections. However, the pharmacological mechanism of SFJDC still remains vague to date. The active ingredients and their target genes of SFJDC were collected from TCMSP. COVID-19 is a type of Novel Coronavirus Pneumonia (NCP). NCP-related target genes were collected from GeneCards database. The ingredients-targets network of SFJDC and PPI networks were constructed. The candidate genes were screened by Venn diagram package for enrichment analysis. The gene-pathway network was structured to obtain key target genes. In total, 124 active ingredients, 120 target genes of SFJDC and 251 NCP-related target genes were collected. The functional annotations cluster 1 of 23 candidate genes (CGs) were related to lung and Virus infection. RELA, MAPK1, MAPK14, CASP3, CASP8 and IL6 were the key target genes. The results suggested that SFJDC cloud be treated COVID-19 by multi-compounds and multi-pathways, and this study showed that the mechanism of traditional Chinese medicine (TCM) in the treatment of disease from the overall perspective.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus , Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Pneumonia, Viral/drug therapy , Protein Interaction Maps/drug effects , Antiviral Agents/chemistry , COVID-19 , Capsules/pharmacology , Caspase 3/genetics , Caspase 8/genetics , Coronavirus Infections/genetics , Gene Expression/drug effects , Humans , Interleukin-6/genetics , Mitogen-Activated Protein Kinase 1/genetics , Pandemics , Pneumonia, Viral/genetics , Protein Interaction Maps/genetics , SARS-CoV-2 , Transcription Factor RelA/genetics , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL